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4,5-Didehydro-7-silyloxymethyl-2-oxepanone and formal
total syntheses of Hagen’s gland lactones and trans-kumausynes
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Abstract—A concise and enantiospecific route to the 2,6-dioxabicyclo[3.3.0]octan-3-one ring system from commercially available
(R)-(+)- and (S)-(�)-glycidols is described. The key features involve ring closing metathesis to construct the 7-substituted-4,5-de-
hydro-2-oxepanone and its base-catalyzed single-step rearrangement into the 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton. Using
this strategy, formal total syntheses of (7R)-cis-Hagen’s gland lactones and (+)- and (�)-trans-kumausynes have been achieved.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Biologically active natural products containing the 2,6-
dioxabicyclo[3.3.0]octan-3-one skeleton.
The 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton is pres-
ent in a number of natural products possessing diverse
biological activities. It serves also as a useful synthon
for several other compounds of this type. In particular,
plakortones, 1, represent a new family of drugs of sub-
stantial pharmacological interest that are relevant in
the correction of cardiac relaxation irregularities and
exhibit in vitro cytotoxic activity on the murine fibro-
sarcoma cell line.1 (+)-Goniofufurone, 2, is an antitumor
styryl-lactone.2 These lactones have generated consider-
able synthetic interest.3,4 The Hagen’s glands of some
parasitic wasps contain fragrant volatile biological
control agents that are rich in c-lactones including bicy-
clic materials 3a and 3b.5 There has been some interest in
the study of their biological roles.6

The related kumausynes 4 and kumausallene 5 are struc-
turally diverse nonisoprenoid compounds, isolated from
the red algae of the genus Laurencia,7 which belong to a
growing family of halogenated natural products.8 These
materials have been demonstrated to exhibit diverse bio-
logical properties such as antitumor, antimicrobial,
immunosuppressant, antifeedant, and pesticidal activity.
Several syntheses of 49 and 510 have appeared. Most of
these approaches are based on a unified strategy that in-
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volves the 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton
as the single most important intermediate (Fig. 1).5e,11

The unique structural features and a wide range of
biological activities of the above natural products have
stimulated considerable synthetic interest aimed toward
the synthesis of the 2,6-dioxabicyclo[3.3.0]octan-3-
one skeleton. We have previously reported a racemic
synthesis of this bicyclic framework starting from 2-
carbomethoxycyclohexanone.12 This protocol, however,
was poor yielding. We report, herein, a new concise and
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Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole,
CH2Cl2, 0–25 �C, 3 h, 99% and (ii) vinylmagnesium bromide, Cu2I2,
THF, �20 �C, 45 min, 95%. (b) vinylacetic acid, DCC, DMAP,
CH2Cl2, 0–25 �C, 6 h, 89%; (c) 5 mol % of Grubbs’ second generation
catalyst, CH2Cl2, 25 �C, 10 h, 72%. (d) epoxidation; (e) DBU, CHCl3,
0–25 �C, 6 h, 85% and (f) K2CO3, DMF, 25 �C, 6 h, 90%.

Table 1. Diastereoselectivity in the epoxidation of 9 with different
reagents

Epoxidation reagents Products Yield (%) (10:11)a

m-CPBA 10 + 11 85 (2:1)
Oxone�/acetone 10 + 11 90 (1:1.5)
Oxone�/Shi’s diester 10 + 11 85b (1:3)

a Isolated yields. The diastereomeric ratios were determined from
integration of the relative 1H NMR signals.

b Yield is based on 55% conversion.
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Scheme 2. Transformation of (+)-12a into (+)-13.
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enantiospecific route to this skeleton from commercially
available chiral glycidols by exploiting ring closing
metathesis13 to construct the 7-substituted-4,5-dide-
hydro-2-oxepanone followed by a base-promoted
single-step rearrangement to the 7-substituted-2,6-dioxa-
bicyclo[3.3.0]octan-3-one skeleton to achieve formal
total syntheses of (7R)-cis-Hagen’s gland lactones and
(+)- and (�)-trans-kumausynes.

The syntheses of 7-tert-butyldiphenylsilyloxymethyl-
2,6-dioxabicyclo[3.3.0]octan-3-ones, (+)-12a and (�)-
12b, are illustrated in Scheme 1. It commences with
imidazole-promoted protection of the carbinol function
in (R)-(+)-glycidol 6 with TBDPSCl, followed by a reac-
tion with vinylmagnesium bromide (1.0 M in THF) in
the presence of Cu2I2

14 to furnish 7 in 94% yield over
two steps. The oxirane ring cleavage took place with full
regiocontrol, giving a single product, as shown, in ac-
cord with the literature.14 Acylation with vinylacetic
acid in the presence of DCC and DMAP gave, after
chromatographic purification, the ring closing metathe-
sis precursor 8 in 89% yield. RCM of 8, catalyzed by
Grubbs’ second generation catalyst, proceeded well
under dilute conditions and the desired seven-membered
ring lactone 9 was isolated in 72% yield.

The exposure of 9 to m-CPBA in CH2Cl2 at 0 �C fur-
nished an easily separable mixture of oxiranes 10 and
11 in a 2:1 ratio and a combined 85% yield. This ratio
changed to 1:1.5 and 1:3 on oxidation with, respectively,
acetone dioxirane15 and the oxirane formed from Shi’s
diester.16 These oxidation results are collected in Table
1. The treatment of 11 with anhydrous K2CO3 in
DMF12 generated (�)-12b in 90% yield after chromato-
graphic purification. However, under these conditions,
10 did not undergo a complete conversion into (+)-
12a. On screening suitable conditions for this transfor-
mation, DBU in CHCl3 offered the best result and
(+)-12a was formed in 85% yield after chromatographic
purification.

The spectral data of (�)-12b and its optical rotation
were consistent with those reported in the literature.11d

The elaboration of (�)-12b into (+)-trans-kumausyne
has been reported previously by Boukouvalas et al.11c

The diastereomer (+)-12a gave alcohol (+)-13 on cleav-
age of the TBDPS-ether with 5% HF in CH3CN in 90%
yield, Scheme 2. The spectral data of (+)-13 were in
agreement with those reported by Mereyala and Gadi-
kota.5d The elaboration of (+)-13 into (7R)-cis-Hagen’s
gland lactones has also been reported previously by
these authors.5d

Following a similar protocol with (S)-glycidol, we have
achieved the syntheses of (�)-12a and (+)-12b. The spec-
tral data of (+)-12b and its optical rotation were in
agreement with those reported in the literature.5d The
elaboration of (+)-12b into (�)-trans- kumausyne has
been reported previously by Osumi and Sugimura.11a

The enantiomeric purities of (+)-12a, (�)-12a, (+)-12b,
and (�)-12b were assessed by chiral HPLC (chiralcel-
ODH) using a 97.5:2.5 mixture of n-hexanes and i-PrOH
as solvent.

Mereyala and Gadikota have synthesized (+)-12b dur-
ing a formal total synthesis of (�)-trans-kumausyne over
10 steps in a 10.9% overall yield.5d The synthesis of (+)-
12b by Osumi and Sugimura proceeded in 11 steps in
11.3% overall yield.11a The synthesis of (+)-12b by Bou-
kouvalas et al. required only six steps and proceeded in a
30.9% overall yield11c and, thus, from comparable to the
present protocol. Lee et al. have synthesized the corre-
sponding aldehyde (replace CH2OSiPh2t-Bu by CHO)
over thirteen steps in a 10.7% overall yield.11b Gadikota
et al. have also achieved the synthesis of (�)-12b in a
projected formal total synthesis of (+)-trans-kumausyne
over 12 steps in 20.3% overall yield.11d Pradilla et al.
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have prepared the alcohol corresponding to (�)-12b in
five steps; the overall yield, however, was only 6.6%.9c

Mereyala and Gadikota have prepared (+)-13 for the
synthesis of (7R)-cis-Hagen’s gland lactones in a 12.8%
overall yield in nine steps.5d Our synthesis proceeds in
seven steps and generates (+)-13 in a 27% overall yield.
The synthesis of (�)-12a, a potential candidate for the
synthesis of (7S)-Hagen’s gland lactones, has not been
reported previously.

In summary, facile enantiospecific syntheses of 7-t-butyl-
diphenylsilyloxymethyl-2,6-dioxabicyclo[3.3.0]octan-3-
ones, (+)-12a, (�)-12a, (+)-12b, and (�)-12b have been
achieved from commercially available chiral glycidols in
30%, 31%, 35% and 36% overall yields, respectively,
over six steps. The yields of (+)-12a and (�)-12a are
based on the oxidation results obtained from m-CPBA
and those of (+)-12b and (�)-12b are based on the
oxidation results obtained from application of the
dioxirane formed from Shi’s diester.

The key features of our strategy are ring closing meta-
thesis to construct the 7-t-butyldiphenylsilyloxymethyl-
4,5-didehydro-2-oxepanone 9 and a base-promoted
one-step rearrangement of 7-t-butyldiphenylsilyloxym-
ethyl-4,5-epoxy-2-oxepanones 10/11 into the requisite
bicyclic skeleton. We have demonstrated the utility of
this approach for the formal total syntheses of (7R)-
cis-Hagen’s gland lactones and (+)- and (�)-trans kum-
ausynes herein.17 A similar application to the synthesis
of goniofufurone is currently under investigation.
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D +24.7 (c 1.0, CHCl3) [lit.5e ½a�25
D +25.0 (c 0.8, CHCl3)],

ee 98%. 1H NMR (400 MHz, CDCl3): d 7.66–7.62 (m, 4H),
7.43–7.35 (m, 6H), 5.11 (dd, J = 4.6 Hz, 1H), 4.82–4.79 (m,
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3.63 (dd, J = 11.0, 3.6 Hz, 1H), 2.71–2.69 (m, 2H), 2.34
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13C NMR (100 MHz, CDCl3): d 175.8, 135.5, 133.1,
129.81, 129.76, 127.7, 85.1, 79.4, 78.6, 65.4, 36.9, 34.4,
26.8, 19.2. IR (KBr) 2927, 1785, 1429, 1110 cm�1. Anal.
Calcd for C23H28O4Si: C, 69.66; H, 7.12. Found: C, 69.70;
H, 7.10.
Spectral data of (1S,5S,7S)-7-tert-butyldiphenylsilyloxy-
methyl-2,6-dioxabicyclo[3.3.0]octan-3-one, (�)-12b. ½a�25

D
–25.8 (c 0.67, CHCl3) [lit.14d ½a�25

D –26.0 (c 1.5, CHCl3)],
ee 97.4%. 1H NMR (400 MHz, CDCl3): d 7.67–7.64 (m,
4H), 7.45–7.36 (m, 6H), 5.03–5.01 (m, 1H), 4.59–4.57 (m,
1H), 4.15–4.12 (m, 1H), 3.76–3.67 (m, 2H), 2.71 (d,
J = 4.1 Hz, 2H), 2.40–2.33 (m, 1H), 2.24–2.18 (m, 1H),
1.05 (s, 9H). 13C NMR (100 MHz, CDCl3): d 175.2, 135.6,
133.33, 133.26, 129.7, 127.7, 84.3, 80.6, 78.9, 65.5, 36.4,
34.6, 26.8, 19.2. IR (KBr) 3071, 2928, 1783, 1428,
1113 cm�1. Anal. Calcd for C23H28O4Si: C, 69.66; H,
7.12. Found: C, 69.60; H, 7.15.
Spectral data of (�)-12a. The 1H and 13C spectral data
were identical to that of (+)-12a. ½a�25

D �25.0 (c 0.8, CHCl3),
ee 98%. Anal. Calcd for C23H28O4Si: C, 69.66% H, 7.12.
Found: C, 69.55; H, 7.10. Spectral data of (+)-12b. ½a�25

D
+25.0 (c 0.7, CHCl3), [lit.5d ½a�25

D +25.4 (c 0.8, CHCl3)], ee
98%. The 1H and 13C spectral data were identical to that of
(�)-12b. Anal. Calcd for C23H28O4Si: C, 69.66; H, 7.12.
Found: C, 69.50; H, 7.04.
Spectral data of (1R,5R,7S)-7-hydroxymethyl-2,6-dioxabi-
cyclo[3.3.0]octan-3-one, (+)-13. ½a�25

D +41.5 (c 1.0, CHCl3),
[lit.5d ½a�25

D +41.7 (c 1.4, CHCl3)], ee 98%. 1H NMR
(400 MHz, CDCl3): d 5.15 (dd, J = 4.6 Hz, 1H), 4.85–4.83
(m, 1H), 4.32–4.26 (m, 1H), 3.86 (dd, J = 12.0, 2.7 Hz, 1H),
3.56 (dd, J = 12.0, 4.6 Hz, 1H), 2.81–2.67 (m, 2H), 2.32
(dd, J = 14.2, 5.6 Hz, 1H), 2.12–2.05 (m, 1H), 1.87 (br s,
1H). 13C NMR (100 MHz, CDCl3): d 175.6, 85.0, 79.0,
78.4, 63.3, 36.8, 33.8. IR (neat) 3367, 2925, 1750,
1040 cm�1. Anal. Calcd for C7H10O4: C, 53.16; H, 6.37.
Found: C, 53.10; H, 6.40.
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