

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7615–7618

4,5-Didehydro-7-silyloxymethyl-2-oxepanone and formal total syntheses of Hagen's gland lactones and trans-kumausynes

Divya Agrawal, Vardhineedi Sriramurthy and Veejendra K. Yadav*

Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India

Received 18 July 2006; revised 5 August 2006; accepted 17 August 2006 Available online 7 September 2006

Abstract—A concise and enantiospecific route to the 2,6-dioxabicyclo^[3.3.0]octan-3-one ring system from commercially available (R) - $(+)$ - and (S) - $(-)$ -glycidols is described. The key features involve ring closing metathesis to construct the 7-substituted-4,5-dehydro-2-oxepanone and its base-catalyzed single-step rearrangement into the 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton. Using this strategy, formal total syntheses of $(7R)$ -cis-Hagen's gland lactones and $(+)$ - and $(-)$ -trans-kumausynes have been achieved. © 2006 Elsevier Ltd. All rights reserved.

The 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton is present in a number of natural products possessing diverse biological activities. It serves also as a useful synthon for several other compounds of this type. In particular, plakortones, 1, represent a new family of drugs of substantial pharmacological interest that are relevant in the correction of cardiac relaxation irregularities and exhibit in vitro cytotoxic activity on the murine fibro-sarcoma cell line.^{[1](#page-2-0)}(+)-Goniofufurone, 2, is an antitumor styryl-lactone.² These lactones have generated consider-able synthetic interest.^{[3,4](#page-2-0)} The Hagen's glands of some parasitic wasps contain fragrant volatile biological control agents that are rich in γ -lactones including bicyclic materials 3a and 3b. [5](#page-2-0) There has been some interest in the study of their biological roles.^{[6](#page-2-0)}

The related kumausynes 4 and kumausallene 5 are structurally diverse nonisoprenoid compounds, isolated from the red algae of the genus Laurencia,^{[7](#page-2-0)} which belong to a growing family of halogenated natural products.[8](#page-2-0) These materials have been demonstrated to exhibit diverse biological properties such as antitumor, antimicrobial, immunosuppressant, antifeedant, and pesticidal activity. Several syntheses of 4^9 4^9 and 5^{10} 5^{10} 5^{10} have appeared. Most of these approaches are based on a unified strategy that in-

Figure 1. Biologically active natural products containing the 2,6 dioxabicyclo[3.3.0]octan-3-one skeleton.

volves the 2,6-dioxabicyclo[3.3.0]octan-3-one skeleton as the single most important intermediate (Fig. 1).^{5e,11}

The unique structural features and a wide range of biological activities of the above natural products have stimulated considerable synthetic interest aimed toward the synthesis of the 2,6-dioxabicyclo[3.3.0]octan-3 one skeleton. We have previously reported a racemic synthesis of this bicyclic framework starting from 2 carbomethoxycyclohexanone[.12](#page-2-0) This protocol, however, was poor yielding. We report, herein, a new concise and

Keywords: Ring closing metathesis; Rearrangement; Natural products; Bicyclic framework; Epoxidation.

^{*} Corresponding author. Tel.: +91 512 259 7439; fax: +91 512 259 7436; e-mail: vijendra@iitk.ac.in

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.08.059

Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole, CH₂Cl₂, 0–25 °C, 3 h, 99% and (ii) vinylmagnesium bromide, Cu₂I₂, THF, -20 °C, 45 min, 95%. (b) vinylacetic acid, DCC, DMAP, CH₂Cl₂, 0–25 °C, 6 h, 89%; (c) 5 mol % of Grubbs' second generation catalyst, CH₂Cl₂, 25 °C, 10 h, 72%. (d) epoxidation; (e) DBU, CHCl₃, 0–25 °C, 6 h, 85% and (f) K₂CO₃, DMF, 25 °C, 6 h, 90%.

enantiospecific route to this skeleton from commercially available chiral glycidols by exploiting ring closing metathesis^{[13](#page-2-0)} to construct the 7 -substituted-4,5-didehydro-2-oxepanone followed by a base-promoted single-step rearrangement to the 7-substituted-2,6-dioxabicyclo[3.3.0]octan-3-one skeleton to achieve formal total syntheses of (7R)-cis-Hagen's gland lactones and $(+)$ - and $(-)$ -*trans*-kumausynes.

The syntheses of 7-tert-butyldiphenylsilyloxymethyl-2,6-dioxabicyclo^[3.3.0] octan-3-ones, $(+)$ -12a and $(-)$ -12b, are illustrated in Scheme 1. It commences with imidazole-promoted protection of the carbinol function in $(R)-(+)$ -glycidol 6 with TBDPSCl, followed by a reaction with vinylmagnesium bromide (1.0 M in THF) in the presence of $Cu₂I₂¹⁴$ $Cu₂I₂¹⁴$ $Cu₂I₂¹⁴$ to furnish 7 in 94% yield over two steps. The oxirane ring cleavage took place with full regiocontrol, giving a single product, as shown, in ac-cord with the literature.^{[14](#page-2-0)} Acylation with vinylacetic acid in the presence of DCC and DMAP gave, after chromatographic purification, the ring closing metathesis precursor 8 in 89% yield. RCM of 8, catalyzed by Grubbs' second generation catalyst, proceeded well under dilute conditions and the desired seven-membered ring lactone 9 was isolated in 72% yield.

The exposure of 9 to m-CPBA in CH_2Cl_2 at 0 °C furnished an easily separable mixture of oxiranes 10 and 11 in a 2:1 ratio and a combined 85% yield. This ratio changed to 1:1.5 and 1:3 on oxidation with, respectively, acetone dioxirane^{[15](#page-3-0)} and the oxirane formed from Shi's diester.[16](#page-3-0) These oxidation results are collected in Table 1. The treatment of 11 with anhydrous K_2CO_3 in $DMF¹²$ generated (-)-12b in 90% yield after chromatographic purification. However, under these conditions, 10 did not undergo a complete conversion into (+)-

Table 1. Diastereoselectivity in the epoxidation of 9 with different reagents

Epoxidation reagents	Products	Yield $(\%)(10:11)^a$
m -CPBA	$10 + 11$	85(2:1)
$Oxone^{\circledR}/acetone$	$10 + 11$	90(1:1.5)
Oxone®/Shi's diester	$10 + 11$	$85^{\rm b} (1:3)$

^a Isolated yields. The diastereomeric ratios were determined from integration of the relative ${}^{1}H$ NMR signals.

 b Yield is based on 55% conversion.</sup>

Scheme 2. Transformation of $(+)$ -12a into $(+)$ -13.

12a. On screening suitable conditions for this transformation, DBU in CHCl₃ offered the best result and $(+)$ -12a was formed in 85% yield after chromatographic purification.

The spectral data of $(-)$ -12b and its optical rotation were consistent with those reported in the literature.^{11d} The elaboration of $(-)$ -12b into $(+)$ -trans-kumausyne has been reported previously by Boukouvalas et al.^{11c} The diastereomer $(+)$ -12a gave alcohol $(+)$ -13 on cleavage of the TBDPS-ether with 5% HF in CH₃CN in 90% yield, Scheme 2. The spectral data of $(+)$ -13 were in agreement with those reported by Mereyala and Gadikota.^{5d} The elaboration of $(+)$ -13 into $(7R)$ -cis-Hagen's gland lactones has also been reported previously by these authors.^{5d}

Following a similar protocol with (S) -glycidol, we have achieved the syntheses of $(-)$ -12a and $(+)$ -12b. The spectral data of $(+)$ -12b and its optical rotation were in agreement with those reported in the literature.^{5d} The elaboration of $(+)$ -12b into $(-)$ -trans- kumausyne has been reported previously by Osumi and Sugimura.^{11a} The enantiomeric purities of $(+)$ -12a, $(-)$ -12a, $(+)$ -12b, and $(-)$ -12b were assessed by chiral HPLC (chiralcel-ODH) using a 97.5:2.5 mixture of n-hexanes and i-PrOH as solvent.

Mereyala and Gadikota have synthesized $(+)$ -12b during a formal total synthesis of $(-)$ -trans-kumausyne over 10 steps in a 10.9% overall yield.^{5d} The synthesis of $(+)$ -12b by Osumi and Sugimura proceeded in 11 steps in 11.3% overall yield.^{11a} The synthesis of $(+)$ -12b by Boukouvalas et al. required only six steps and proceeded in a 30.9% overall yield^{11c} and, thus, from comparable to the present protocol. Lee et al. have synthesized the corresponding aldehyde (replace $CH₂OSiPh₂t-Bu$ by CHO) over thirteen steps in a 10.7% overall yield.^{11b} Gadikota et al. have also achieved the synthesis of $(-)$ -12b in a projected formal total synthesis of $(+)$ -trans-kumausyne over 12 steps in 20.3% overall yield.11d Pradilla et al.

have prepared the alcohol corresponding to $(-)$ -12b in five steps; the overall yield, however, was only 6.6% ^{9c}

Mereyala and Gadikota have prepared $(+)$ -13 for the synthesis of $(7R)$ -cis-Hagen's gland lactones in a 12.8% overall yield in nine steps.^{5d} Our synthesis proceeds in seven steps and generates $(+)$ -13 in a 27% overall yield. The synthesis of $(-)$ -12a, a potential candidate for the synthesis of (7S)-Hagen's gland lactones, has not been reported previously.

In summary, facile enantiospecific syntheses of 7-t-butyldiphenylsilyloxymethyl-2,6-dioxabicyclo[3.3.0]octan-3 ones, $(+)$ -12a, $(-)$ -12a, $(+)$ -12b, and $(-)$ -12b have been achieved from commercially available chiral glycidols in 30%, 31%, 35% and 36% overall yields, respectively, over six steps. The yields of $(+)$ -12a and $(-)$ -12a are based on the oxidation results obtained from m-CPBA and those of $(+)$ -12b and $(-)$ -12b are based on the oxidation results obtained from application of the dioxirane formed from Shi's diester.

The key features of our strategy are ring closing metathesis to construct the 7-t-butyldiphenylsilyloxymethyl-4,5-didehydro-2-oxepanone 9 and a base-promoted one-step rearrangement of 7-t-butyldiphenylsilyloxymethyl-4,5-epoxy-2-oxepanones 10/11 into the requisite bicyclic skeleton. We have demonstrated the utility of this approach for the formal total syntheses of $(7R)$ *cis*-Hagen's gland lactones and $(+)$ - and $(-)$ -*trans* kumausynes herein.[17](#page-3-0) A similar application to the synthesis of goniofufurone is currently under investigation.

Acknowledgments

V.K.Y. thanks CSIR, Government of India, for funding the research. D.A. and V.S. thank the CSIR and IIT Kanpur for a JRF and an SRF, respectively.

References and notes

- 1. (a) Stierle, D. B.; Faulkner, D. J. J. Org. Chem. 1980, 45, 3396; (b) Patil, A. D.; Freyer, A. J.; Bean, M. F.; Carte, B. K.; Westley, J. W.; Johnson, R. K.; Lahouratate, P. Tetrahedron 1996, 52, 377; (c) Caffierei, F.; Fattorusso, E.; Taglialatela-Scafati, O.; Ianaro, A. Tetrahedron 1999, 53, 7045; (d) Caffierei, F.; Fattorusso, E.; Taglialatela-Scafati, O.; Rosa, M. D.; Ianaro, A. Tetrahedron 1999, 55, 13831; (e) Gochfeld, D. J.; Hamann, M. T. J. Nat. Prod. 2001, 64, 1477.
- 2. (a) Fang, X. P.; Anderson, J. E.; Chang, C. J.; Fanwick, P. E.; McLaughlin, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 1655; (b) Mereyala, H. B.; Gadikota, R. R.; Joe, M.; Arora, S. K.; Dastidar, S. G.; Agarwal, S. Bioorg. Med. Chem. 1999, 7, 2095.
- 3. For the reported approaches to and syntheses of plakortones, see: (a) Paddon-Jones, G. C.; Hungerford, N. L.; Hayes, P.; Kitching, W. Org. Lett. 1999, 1, 1905; (b) Bittner, C.; Burgo, A.; Murphy, P. J.; Sung, C. H.; Thornhill, A. J. Tetrahedron Lett. 1999, 40, 3455; (c) Semmelhack, M. F.; Shanmugam, P. Tetrahedron Lett. 2000, 41, 3567; (d) Lee, H. K.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 2002, 18, 2114; (e) Hayes, P.;

Kitching, W. J. Am. Chem. Soc. 2002, 124, 9718; (f) Kowashi, S.; Ogamino, T.; Kamei, J.; Ishikawa, Y.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 4393; (g) Hayes, P. Y.; Kitching, W. Heterocycles 2004, 62, 173.

- 4. For syntheses of gonifufurone, see: (a) Gracza, T.; Jaeger, V. Synlett 1992, 3, 191; (b) Murphy, P. J.; Dennison, S. T. Tetrahedron 1993, 49, 6695; (c) Mukai, C.; Kim, I. J.; Hanaoka, M. Tetrahedron Lett. 1993, 34, 6081; (d) Gracza, T.; Jaeger, V. Synthesis 1994, 1359; (e) Shing, T. K. M.; Tsui, H.-C.; Zhou, Z.-H. J. Org. Chem. 1995, 60, 3121; (f) Mereyala, H. B.; Gadikota, R. R.; Krishnan, R. K. J. Chem. Soc., Perkin Trans. 1 1997, 23, 3567; (g) Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. J. Org. Chem. 1998, 63, 7472; (h) Su, Y.-L.; Yang, C.-S.; Teng, S.-J.; Zhao, G.; Ding, Y. Tetrahedron 2001, 57, 2147; (i) Popsavin, V.; Grabez, S.; Popsavin, M.; Krstic, I.; Kojic, V.; Bogdanovic, G.; Divjakovic, V. Tetrahedron Lett. 2004, 51, 9409; (j) Ruiz, P.; Murga, J.; Carda, M.; Marco, J. A. J. Org. Chem. 2005, 70, 713; (k) Prasad, K. R.; Gholap, S. L. Synlett 2005, 19, 3018.
- 5. For characterization of 3a and 3b, see: Williams, H. J.; Wong, M.; Wharton, R. A.; Vinson, S. B. J. Chem. Ecol. 1988, 14, 1727; For the syntheses of 3a and 3b, see: (a) Paddon-Jones, G. C.; Moore, C. J.; Brecknell, D. J.; König, W. A.; Kitching, W. Tetrahedron Lett. 1997, 38, 3479; (b) Mereyala, H. B.; Gadikota, R. R. Chem. Lett. 1999, 3, 273; (c) Mereyala, H. B.; Gadikota, R. R.; Sunder, K. S.; Shailaja, S. Tetrahedron 2000, 56, 3021; (d) Mereyala, H. B.; Gadikota, R. R. Tetrahedron: Asymmetry 2000, 11, 743; (e) Paddon-Jones, G. C.; McErlean, C. S. P.; Hayes, P.; Moore, C. J.; König, W. A.; Kitching, W. J. Org. Chem. 2001, 66, 7487.
- 6. (a) Hagen, K. L. Proc. Hawaii Entamol. Soc. 1953, 15, 115; (b) Buckingham, G. R. Ann. Entamol. Soc. Am. 1968, 61, 233.
- 7. Suzuki, T.; Koizumi, K.; Suzuki, M.; Kurosawa, E. Chem. Lett. 1983, 1639, 1643.
- 8. Faulkner, D. J. Nat. Prod. Rep. 1999, 16, 155.
- 9. (a) Brown, M. J.; Harrison, T.; Overman, L. E. J. Am. Chem. Soc. 1991, 113, 5378; (b) Olivier, A.; Cecile, G.; Yannick, L.; Liliana, P.-R. Tetrahedron 1997, 53, 2835; (c) de la Pradilla, R. F.; Montero, C.; Priego, J.; Martinez-Cruz, L. A. J. Org. Chem. 1998, 63, 9612; (d) Garcia, C.; Martin, T.; Martin, V. S. J. Org. Chem. 2001, 66, 1420; (e) Chandler, C. L.; Phillips, A. J. Org. Lett. 2005, 16, 3493; (f) de la Pradilla, R. F.; Carolina, A.; Alejandro, C.; Jorge, F.; Pilar, M.; Carlos, M.; Mercedes, U.; Alma, V. J. Org. Chem. 2005, 70, 10693.
- 10. (a) Grese, T. A.; Hutchinson, K. D.; Overman, L. E. J. Org. Chem. 1993, 58, 2468; (b) Lee, E.; Yoo, S.; Choo, H.; Song, H. Y. Tetrahedron Lett. 1998, 39, 317; (c) Andrew, E. P.; Srinivasa, M. V.; Jamie, D. R.; Arnold, L. R. Angew. Chem., Int. Ed. 1999, 38, 3175.
- 11. (a) Osumi, K.; Sugimura, H. Tetrahedron Lett. 1995, 36, 5789; (b) Lee, E.; Yoo, S.; Choo, Y. S.; Cheon, H. S.; Chong, Y. H. Tetrahedron Lett. 1997, 38, 7757; (c) Boukouvalas, J.; Fortier, G.; Radu, I.-I. J. Org. Chem. 1998, 63, 916; (d) Gadikota, R. R.; Callam, C. S.; Lowary, T. L. J. Org. Chem. 2001, 66, 9046.
- 12. Jeyaraj, D. A.; Kapoor, K. K.; Yadav, V. K.; Gauniyal, H. M.; Parvez, M. J. Org. Chem. 1998, 63, 287.
- 13. For reviews on ring closing metathesis, see: (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446; (b) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. 1997, 36, 2036; (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413; (d) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013.
- 14. Bonini, C.; Chiummiento, L.; Lopardo, M. T.; Pullez, M.; Colobert, F.; Solladie, G. Tetrahedron Lett. 2003, 44, 2695.
- 15. (a) Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. J. Org. Chem. 1980, 45, 4758; (b) Murray, R. W. Chem. Rev. 1989, 89, 1187.
- 16. (a) Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806; (b) Nieto, N.; Molas, P.; Benet-Buchholz, J.; Vidal-Ferran, A. J. Org. Chem. 2005, 70, 10143.
- 17. Spectral data of tert-butyldiphenylsilyl ether of (S)-glycidol: ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.67 (m, 4H), 7.44–7.36 (m, 6H), 3.86 (dd, $J = 12.0$, 3.2 Hz, 1H), 3.70 (dd, $J = 12.0$, 4.9 Hz, 1H), 3.14–3.10 (m, 1H), 2.73 (dd, $J = 5.1, 4.2$ Hz, 1H), 2.60 (dd, $J = 5.1, 2.7$ Hz, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 135.59, 135.54, 133.3, 129.7, 127.7, 64.3, 52.3, 44.4, 26.7, 19.2. IR (neat) 2931, 1467, 1110, 823, 704 cm⁻¹. Anal. Calcd for C₁₉H₂₄O₂Si: C, 73.03; H, 7.74. Found: C, 72.90; H, 7.80. Spectral data of (S)-1-(tert-butyldiphenylsilyloxy)-4 penten-2-ol (7). ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.65 (m,4H), 7.45–7.36 (m, 6H), 5.82–5.75 (m, 1H), 5.09–5.03 $(m, 2H)$, 3.80–3.75 $(m, 1H)$, 3.67 (dd, $J = 10.2$, 3.9 Hz, 1H),
	- 3.55 (dd, $J = 10.2$, 6.8 Hz, 1H), 2.26–2.22 (m, 2H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 135.5, 134.3, 133.1, 129.7, 129.4, 127.7, 127.5, 117.3, 71.2, 67.3, 37.5, 26.8, 19.2. IR (neat) 3071, 2931, 1428 cm⁻¹. Anal. Calcd for $C_{21}H_{28}O_2Si$: C, 74.07; H, 8.29. Found: C, 74.10; H, 8.30.

Spectral data of (S)-1-(tert-butyldiphenylsilyloxy)pent-4en-2-yl-3-butenoate (8). ¹H NMR (400 MHz, CDCl₃): δ 7.68–7.64 (m, 4H), 7.45–7.35 (m, 6H), 5.94–5.86 (m, 1H), 5.75–5.68 (m, 1H), 5.17–5.03 (m, 5H), 3.74–3.67 (m, 2H), 3.11–3.00 (m₁ 2H), 2.48–2.42 (m, 1H), 2.39–2.32 (m, 1H), 1.05 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 135.6, 135.5, 133.3, 133.2, 130.3, 129.9, 129.6, 127.6, 118.4, 117.9, 73.7, 64.3, 39.2, 35.0, 26.7, 19.2. IR (neat) 3073, 2933, 1738, 1428 cm⁻¹. Anal. Calcd for C₂₅H₃₂O₃Si: C, 73.49; H, 7.89. Found: C, 73.40; H, 7.90.

Spectral data of (S) -7- $((tert$ -butyldiphenylsilyloxy)methyl)- $4,5$ -dehydro-oxepan-2-one (9). ^IH NMR (400 MHz, CDCl₃): δ 7.66–7.64 (m, 4H), 7.44–7.36 (m, 6H), 5.73– 5.68 (m, 1H), 5.54–5.50 (m, 1H), 4.73–4.67 (m, 1H), 3.84 $(dd, J = 10.8, 5.6 \text{ Hz}, 1\text{H}$, 3.67 (dd, $J = 10.8, 6.1 \text{ Hz}, 1\text{H}$), 3.60 (dd, $J = 16.6$, 3.0 Hz, 1H), 3.01 (dd, $J = 16.6$, 8.5 Hz, 1H), 2.57–2.52 (m, 1H), 2.42–2.34 (m, 1H), 1.05 (s, 9H).
¹³C NMR (100 MHz, CDCl₃): δ 172.1, 135.6, 133.0, 129.9, 128.8, 127.8, 127.7, 118.6, 65.5, 33.9, 32.2, 29.7, 26.8, 19.2. IR (neat) 3042, 2932, 1742, 1428 cm-1 . Anal. Calcd for C₂₃H₂₈O₃Si: C, 72.59; H, 7.42. Found: C, 72.45; H, 7.35. Spectral data of 10. ¹H NMR (400 MHz, CDCl₃): δ 7.67– 7.65 (m, 4H), 7.46–7.37 (m, 6H), 4.16–4.11 (m, 1H), 3.79 $(dd, J = 11.2, 5.4 Hz, 1H$, 3.69 (dd, $J = 10.7, 5.4 Hz, 1H$), 3.31–3.27 (m, 1H), 3.22–3.21 (m, 1H), 3.14 (dd, $J = 15.4$, 8.1 Hz, 1H), 2.91 (dd, $J = 15.4$, 2.4 Hz, 1H), 2.51 (d, $J = 16.1$ Hz, 1H), 2.20–2.13 (ddd, $J = 16.1$, 11.2, 2.4 Hz, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 135.6, 132.8, 129.9, 127.8, 73.6, 65.0, 52.6, 48.6, 34.1, 30.4, 26.8, 19.2. IR (KBr) 2928, 2850, 1730, 1426, 1109 cm⁻¹.

Anal. Calcd for $C_{23}H_{28}O_4Si$: C, 69.66; H, 7.12. Found: C, 69.60; H, 7.10.

Spectral data of 11. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.66 - 7.64$ (m, 4H), 7.47–7.38 (m, 6H), 4.52–4.47 (m, 1H), 3.78 (dd, $J = 10.5$, 5.1 Hz, 1H), 3.58 (dd, $J = 10.5$, 6.6 Hz, 1H), 3.39–3.22 (m, 4H), 2.39–2.25 (m, 2H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 168.0, 135.5, 132.82, 132.77, 130.0, 127.8, 76.1, 65.4, 52.6, 50.7, 35.4, 28.8, 26.8, 19.2. IR (KBr) 2928, 2857, 1741, 1426, 1110 cm⁻¹. Anal. Calcd for $C_{23}H_{28}O_4Si$: C, 69.66; H, 7.12. Found: C, 69.56; H, 7.15.

Spectral data of (1R,5R,7S)-7-tert-butyldiphenylsilyloxymethyl-2,6-dioxabicyclo[3.3.0]octan-3-one, (+)-12a. $[\alpha]_{\text{D}}^{25}$ +24.7 (c 1.0, CHCl₃) [lit.^{5e} $[\alpha]_{\text{D}}^{25}$ +25.0 (c 0.8, CHCl₃)], ee 98%. ¹H NMR (400 MHz, CDCl₃): δ 7.66–7.62 (m, 4H), $7.43-7.35$ (m, 6H), 5.11 (dd, $J = 4.6$ Hz, 1H), $4.82-4.79$ (m, 1H), 4.31–4.26 (m, 1H), 3.80 (dd, $J = 11.0$, 3.4 Hz, 1H), 3.63 (dd, $J = 11.0$, 3.6 Hz, 1H), 2.71–2.69 (m, 2H), 2.34 (dd, $\hat{J} = 14.2, 6.4$ Hz, 1H), 2.21–2.14 (m, 1H), 1.04 (s, 9H).
¹³C NMR (100 MHz, CDCl₃): δ 175.8, 135.5, 133.1, 129.81, 129.76, 127.7, 85.1, 79.4, 78.6, 65.4, 36.9, 34.4, 26.8, 19.2. IR (KBr) 2927, 1785, 1429, 1110 cm⁻¹. Anal. Calcd for C23H28O4Si: C, 69.66; H, 7.12. Found: C, 69.70; H, 7.10.

Spectral data of (1S,5S,7S)-7-tert-butyldiphenylsilyloxymethyl-2,6-dioxabicyclo^[3.3.0]octan-3-one, (-)-**12b**. $[\alpha]_D^{25}$
-25.8 (c 0.67, CHCl₃) [lit.^{14d} $[\alpha]_D^{25}$ -26.0 (c 1.5, CHCl₃)], ee 97.4%. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.64 (m, 4H), 7.45–7.36 (m, 6H), 5.03–5.01 (m, 1H), 4.59–4.57 (m, 1H), 4.15–4.12 (m, 1H), 3.76–3.67 (m, 2H), 2.71 (d, $J = 4.1$ Hz, 2H), 2.40–2.33 (m, 1H), 2.24–2.18 (m, 1H), 1.05 (s, 9H). 13C NMR (100 MHz, CDCl3): d 175.2, 135.6, 133.33, 133.26, 129.7, 127.7, 84.3, 80.6, 78.9, 65.5, 36.4, 34.6, 26.8, 19.2. IR (KBr) 3071, 2928, 1783, 1428, 1113 cm⁻¹. Anal. Calcd for C₂₃H₂₈O₄Si: C, 69.66; H, 7.12. Found: C, 69.60; H, 7.15.

Spectral data of $(-)$ -12a. The ¹H and ¹³C spectral data were identical to that of (+)-12a. $[\alpha]_D^{25}$ –25.0 (c 0.8, CHCl₃), ee 98%. Anal. Calcd for C₂₃H₂₈O₄Si: C, 69.66% H, 7.12. Found: C, 69.55; H, 7.10. Spectral data of (+)-12b. $[\alpha]_D^{25}$
+25.0 (c 0.7, CHCl₃), [lit.^{5d} $[\alpha]_D^{25}$ +25.4 (c 0.8, CHCl₃)], ee 98%. The 1 H and 13 C spectral data were identical to that of $(-)$ -12b. Anal. Calcd for $C_{23}H_{28}O_4Si$: C, 69.66; H, 7.12. Found: C, 69.50; H, 7.04.

Spectral data of (1R,5R,7S)-7-hydroxymethyl-2,6-dioxabicyclo[3.3.0]octan-3-one, $(+)$ -13. $[\alpha]_D^{25}$ +41.5 (c 1.0, CHCl₃), [lit.^{5d} $[\alpha]_D^{25}$ +41.7 (c 1.4, CHCl₃)], ee 98%. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 5.15 (dd, $J = 4.6 \text{ Hz}, 1\text{ H}$), 4.85–4.83 $(m, 1H), 4.32-4.26$ $(m, 1H), 3.86$ (dd, $J = 12.0, 2.7$ Hz, 1H), 3.56 (dd, $J = 12.0$, 4.6 Hz, 1H), 2.81–2.67 (m, 2H), 2.32 (dd, $J = 14.2$, 5.6 Hz, 1H), 2.12–2.05 (m, 1H), 1.87 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 175.6, 85.0, 79.0, 78.4, 63.3, 36.8, 33.8. IR (neat) 3367, 2925, 1750, 1040 cm⁻¹. Anal. Calcd for C₇H₁₀O₄: C, 53.16; H, 6.37. Found: C, 53.10; H, 6.40.